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ABSTRACT

In the IoT-Fog-Cloud landscape, IoT devices are connected to numerous software applications in or-
der to fully operate. Some applications are deployed on the Fog layer, providing low-latency access
to resource, whilst others are deployed on the Cloud to provide important resource capabilities and
process heavy computation. In this distributed landscape, the deployment infrastructure has to adapt
to the highly dynamic requirements of the IoT layer. However, due to their intrinsic properties, the Fog
layer may lack of providing sufficient amount of resource while the Cloud layer fails ensuring low-
latency requirements. In this paper, we present a rewriting-based approach to design and verify the
Cloud-Fog self-adaption and orchestration behaviors in order to manage infrastructure reconfiguration
towards achieving low-latency and resources quantity trade-offs. We rely of the formal specification
language Maude to provide an executable solution of these behaviors basing on the rewriting logic
and we express properties with linear temporal logic (LTL) to qualitatively verify the adaptations

correctness.

1. Introduction

Fog computing [32] is an emerging paradigm that ex-
tends the Cloud [20] to be closer to the things that produce
and act on IoT [3] data. The Fog employs resources, called
Fog nodes, that can be deployed anywhere with a network
connection: on a facility indoors, on top of a power pole,
in/on a vehicle, alongside a railway track, etc. Any device
with computing power, storage capacity, and network con-
nectivity can be a Fog node. Examples include local de-
dicted servers, industrial controllers, switches, routers, em-
bedded servers and so on. The idea of the Fog is analyzing
IoT data close to where it is collected (i.e., at the edge of the
IoT-Cloud continuum network) mainly to minimize latency.
It offloads important amount of network traffic from the core
network (i.e., the Cloud) and it keeps sensitive data inside the
network (i.e. close to the IoT devices) [4, 26]. The Fog is an
important and clever solution for latency sensitive compu-
tation and storage. It is however not ready to fully replace
the Cloud. The latter is still highly used for computation-
intensive and latency-insensitive activity. The Cloud pro-
vides massive quantity of computing resource gathered in
distant facilities called data-centers (hence the latency). It is
a strong reliable source (and backup solution) of computing
and storage power, yet it fails answering low-latency require-
ments, whereas Fog nodes are globally categorized with lim-
ited computing resource capabilities, possess relatively low
storage and energy abilities but ensure low-latency compu-
tation. Figure 1 gives a conceptual vision of the Cloud-Fog
resource offering in the IoT context.
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Figure 1: Resource offering in the loT-Fog-Cloud landscape

In the IoT-Fog-Cloud landscape, devices in the IoT layer
interract with software applications (ex. cloudlets, micro-
services, etc.) that can be deployed on the Cloud layer servers
(ex. Virtual machines, containers) and/or Fog layer nodes.
On the one hand, Fog applications are as diverse as the In-
ternet of Things itself [4]. They perform several tasks as
monitoring or analyzing data from network-connected things
and devices, then initiate an action. Actions can involve
machine-to-machine communications or human-machine in-
teraction. Examples include locking/opening a window/door,
reconfiguring an equipment (i.e. by changing settings), ap-
plying the brakes on a vehicle, opening a valve in response
to a pressure threshold or sending an alert to a human op-
erator to make a preventive/reactive intervention. The pos-
sibilities are numerous but have in common to be relatively
low resource consuming yet low latency-sensitive. On the
other hand, Cloud-based applications can be used by both
IoT devices and Fog-based applications. Cloud applications
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perform intensive latency-insensitive calculation (ex. strate-
gic planning with complex data processing, complex deci-
sion making, high workload peak absorbtion, etc.) and mas-
sive storage requirements (ex. huge database hosting and
big data processing) including data sustainability solutions.
Thus, Cloud and Fog are defacto complementary and have
to coexist in the IoT landscape [18].

The IoT environment is of a highly dynamic nature [8], it
requires the Fog layer to be ubiquitous, dynamic and smoothly
scalable and reconfigurable (i.e., adaptable) to support ser-
vices mobility across nodes and demand fluctuations [22].
Similarly, the Cloud layer is wanted to be highly scalable -
and therefore elastic [10, 11]- to absorb the workload peaks
(i.e., by providing more resource) as well as contractible when
the workload drops (i.e., by freeing unneeded resource). Given
the importantly dynamic nature of the IoT layer, which incar-
nate the environement pushing needs and requirments, both
Fog and Cloud adaptation has to be of autonomic manage-
ment (i.e., of minimal human intervention) and are therefore
qualified as self-adaptable [12]. If Cloud elasticity (which
implies self-adaptation) has been studied and explored for
years [ 1] and considered as relatively mature, Fog self-adapta-
tion in terms of node availability control (switching on/off),
services distribution across nodes and the Fog layer tempo-
ral evolution are important research concerns that still need
to be investigated, which makes it challenging to master Fog
systems design at the present time. The main questions we
tend to address are: (I) how to accurately design self-adaptat-
ion aspects in the Fog layer and (II) how to thoroughly ex-
press and ensure properties regarding Fog applications re-
quirements and characteristics, while continuously evolving
over time. Furthermore, we tend to study (III) how self-
adaptive behaviors of both Cloud and Fog layers articulate
(i.e., orchestrate) in the IoT landscape to answer the het-
erogeneous demands in terms of computing resource capa-
bility, service availability and low-latency sensitivity. For-
mal methods present the appropriate mechanisms to address
these open issues. Based on mathematical concepts, they
provide the required accuracy and rigor to express and en-
sure high-level qualitative specification of both Cloud and
Fog self-adaptation and present a reliable solution for tem-
poral properties study of their dynamic behaviors.

In this paper, we propose a solution to manage Cloud
Fog self-adaptation and orchestration basing on centralized
control pattern as described in [30]. Orchestrating Cloud
and Fog is a key concept aiming at optimizing the use of
resource pools available at both layers in order to accurately
meet the underlying IoT requirements. The idea is first to
specify self-adaptation at Cloud and Fog layers in terms of
structure and behavior. This step’s output is to identify a
set of monitoring predicates and atomic adaptation actions.
The predicates are to diagnose both layers’ states in terms
of resource provisioning (over/under provisioning). The ac-
tions are to identify adaptation mechanisms to apply such as
replicating a service instance, migrating a service to a differ-
ent Cloud server (virtual machine) or Fog node, and resizing
Cloud VMs in terms of resource (processing, memory and
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Figure 2: Our formal solution for the specification and analysis
of Cloud-Fog self-adaptation and orchestration

bandwidth) offering, etc.. The second step is specifying a
Cloud-Fog orchestrator which decides of the actions to be
triggered in order to adapt at Cloud and/or Fog layers. The
orchestrator considers the observed states (monitoring pred-
icates) of both layers and then applies the proper sequence
of actions (i.e., strategy) to achieve an adaptation at one or
both layers, if the specified conditions are satisfied. Finally,
the third step is identifying and designing a set of temporal
properties to be satisfied to ensure the adaptations’ qualita-
tive correctness.

To achieve all these goals, we propose a formal model-
ing approach of self-adaptive Cloud and Fog orchestration
based on rewriting logic [19] through the formal specifica-
tion language called Maude and its associated tools includ-
ing a model-checker for formal qualitative verification [6, 5].
We choose Maude for several reasons: (1) the language it-
self is expressive enough to model both Cloud and Fog lay-
ers in terms of structure which include sets of servers, nodes,
services and resource allocation for each. (2) The Maude’s
underlying rewriting logic semantics are executable and al-
low designing structural reconfiguration (i.e., adaptation ac-
tions) with correctness-by-definition insurance. (3) The lan-
guage and semantics support boolean expressions and first
order logic which are relevant to design the monitoring pred-
icates. Finally (4), Maude provides a model-checker which
supports symbolic state-based verification of properties (by
implementing a Kripke structure). The properties can be ex-
pressed with Linear Temporal Logic (LTL) which is relevant
to study the managed Cloud-Fog environment temporal evo-
lution in a qualitative point of view [2]. The main goal of
our approach is finally to provide a formal design and im-
plementation of the Cloud-Fog self-adaptive behaviors and
express qualitative properties over these behaviors that can
be formally verified.
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Figure 2 summarizes the principal of our formal approach
for the specification and analysis of Cloud-Fog self-adaptation
and orchestration. The Maude-based specifications enable a
system designer to model initial Cloud/Fog configurations
and to express application constraints, respectively in terms
of resource deployment (servers, resources and services for
each layer) and self-adaptation strategies set-up (triggering
conditions’ threshold values for loads, resources and latency).
Ultimately, the Maude system allows analyzing the specified
behaviors under two aspects: simulation/monitoring and for-
mal verification, respectively using the Maude rewriting en-
gine and the Maude-built-in model-checker. Precisely, the
designed system’s state evolution can be simulated and mon-
itored to witness the execution of the specified self-adaptation
and orchestration strategies. In addition, the states evolution
can be formally verified using a symbolic state-based model-
checking technique relying on LTL as a temporal logic, and
implementing a Kripke structure to consider symbolic high-
level system states, thus overcoming the state explosion prob-
lem. Precisely, a Kripke structure allows expressing classes
of equivalence to gather different structural states (i.e., con-
figurations) under the same symbolic state with respect to
logical predicates to be developed later.

The remainder of the paper is organized as follows. Sec-
tion 2, introduces our model for Cloud-For orchestration and
discusses its encoding into Maude’s rewriting logic princi-
ples. Section 3 presents our Maude-based specification for
Cloud and Fog layers in terms of structure and self-adaptive
behavior. Section 4 gives the Cloud-Fog orchestrator’s be-
haviors and adaptation triggering logic. It describes tem-
poral qualitative properties using LTL and discusses formal
verification using Maude’s tools. Section 5 illustrates our so-
lution of Cloud-Fog self-adaptation and orchestration through
a smart city scenario case study. Section 6 discusses related
wor, and finally, Section 7 concludes the paper and discusses
future directions. In addition, we provide the Maude speci-
fication modules in Appendix A and we explain the defined
LTL formulas in Appendix B.

2. A model for self-adaptive Cloud-Fog
orchestration

The Fog extends the Cloud to be closer to the things that
produce and act on IoT data. The Fog employs resources,
called Fog nodes, that can be deployed anywhere with a net-
work connection. Any device with computing power, stor-
age capacity and network connectivity can be a Fog node.
The main idea of the Fog is analyzing IoT data closer to
where it is collected (i.e., at the edge of the IoT-Cloud con-
tinuum network) mainly to minimize the latency. The Fog
offloads important amount of network traffic from the core
network (i.e., the Cloud) and it keeps sensitive data inside
the network (i.e. close to the IoT devices). On the other
hand, the Cloud is highly used for computation-intensive and
latency-insensitive activity. It provides massive quantity of
computing resource gathered in distant facilities (hence the
latency) called data-centers. The Cloud layer is a strong
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Figure 3: Services, resources and interactions in Cloud, Fog
and loT layers

reliable source of computing and storage power yet it fails
answering low-latency requirements, whereas the Fog layer
nodes are globally categorized with limited computing re-
source capabilities, possess relatively low storage and energy
abilities but ensure low-latency computation. Both Cloud
and Fog provide resource capabilities in terms of process-
ing (CPU) and memory (RAM). Resources are available as
pools hosted on both infrastructures (i.e., Cloud servers and
Fog nodes) and are provided via (Cloud and Fog) services
of different networking capabilities (i.e., bandwidth). Fig-
ure 3 shows how resources and services are provided on both
Cloud and Fog layers, and how devices in the IoT layer inter-
act with Cloud and/or Fog service instances to operate (i.e.,
by sending/receiving requests and data).

2.1. Cloud and Fog self-adaptation

The IoT layer is of a highly dynamic nature. It incar-
nates the environment pushing needs and requirements that
continuously evolve over time. This requires the Fog layer
to be ubiquitous, dynamic, smoothly scalable and reconfig-
urable (i.e., adaptable) to support services mobility across
nodes, and demand fluctuations. Similarly, the Cloud layer is
wanted to be highly scalable -and therefore adaptable- to ab-
sorb the workload peaks (i.e., by providing more resources)
as well as contractible when the workload drops (i.e., by free-
ing unneeded resources). However, given how fast the de-
mands may evolve, and how complex it might get to rapidly
react to some situations by providing proper action plans,
both Cloud and Fog adaptation need to be ensured in an au-
tomated way, thus qualified as self-adaptation. Generally,
self-adaptation is ensured by autonomic management [12].
It consists of a controller (or more) monitoring a managed
system to gather data describing its state (e.g., in terms of
resource provisioning regarding the demand). This informa-
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tion is then analyzed in search for anomalies in any kind. Fi-
nally, plans are provided to describe the required actions to
be triggered in order to fix the detected anomalies, according
to predefined preferences (i.e., strategies), and the process is
reiterated from the monitoring task.

In the context of the Cloud-Fog ecosystem, we consider
self-adaptation as the ability to cope with the evolving de-
mands of the underlying IoT layer. The allocated resource
to Cloud servers (VMs, Containers), Fog nodes and/or both
layers’ services must be scalable and dynamic to address
the highly dynamic IoT requirements in terms of computing
resources. This ability implies adaptation at service (soft-
ware) and infrastructure (virualization and hosting) levels.
Adaptation could be about providing more resource to max-
imize performance (when the demand rises), freeing unnec-
essary resource to minimize operating costs (whe the de-
mand drops) as well as optimizing service resource place-
ment for latency and performance requirements. In the Cloud,
self-adaptation is ensured by elasticity: a property ensuring
autonomic resource adjustemnt by (de)provisioning comput-
ing resource [10, 11]. In the Fog however, it is focused on
service placement and mobility on Fog nodes mainly to en-
sure low-latency access and resource sufficiency [26] to pro-
cess the IoT layer’s demands. To control self-adaptation ca-
pabilities of both the Cloud and the Fog layers, we provide
self-adaptation strategies to address various regulation prob-
lems within both layers respectively. The strategies are trig-
gered when specified conditions are satisfied by executing
the corresponding adaptation actions. The designed high-
level strategies to be presented in this paper for both Cloud
and Fog self-adaptation behaviors are described as follows:

Cloud self-adaptation strategies

e Scale-out: deploying additional resources (VMs and
services) to cope with the growing demand.

e Scale-in: freeing unnecessarily provisioned VMs and
services when the demand drops.

e Scale-up: adjusting VMs offering by allocating more
computing resources.

e Scale-down: adjusting VMs offering by freeing un-
used computing resources.

e Load-balancing: redirecting requests across the de-
ployed services to balance the system’s load.

e Service migration: migrating services across the de-
ployed VMs to optimize the resource utilization.

Fog self-adaptation strategies

e Provisioning: deploying additional resources (Fog
nodes, service instances) to deal with growing demand.

e Deprovisioning: freeing unnecessarily deployed nodes
and services when the demand drops.

e Load-balancing: redirecting requests across the de-
ployed services to balance the system’s load.

e Service mobility: (re)placing services across the avail-
able Fog nodes to optimize the resource utilization.

2.2. Orchestrating the Cloud-Fog self-adaptation

Orchestration [9, 21] is the automated configuration, co-
ordination and management of computer systems and soft-
ware. It consists of aligning the infrastructure, applications
and data with the business requirements. The main pur-
pose of orchestrating systems is to enable their directed ac-
tions towards common goals and objectives. As Cloud and
the Fog coexist in order to serve common applications, they
both need to self-adapt in a way to achieve their common
goals and objectives. In this sense, orchestrating Cloud and
Fog self-adaptation is about directing their respective self-
adaptation behaviors towards ensuring decision making, ba-
sed on shared monitoring data, in order to achieve common
high-level goals and purposes. Precisely, meet application
performance goals using minimized cost, maximize applica-
tion performance within resource constraints, optimize ap-
plication performance using low-latency and resource allo-
cation trade-offs, and so on. To describe the orchestration
of Cloud-Fog self-adaptation behaviors, we propose two or-
chestration strategies as follows:

Orchestration strategies

e Offload: relocating a Cloud service from a VM de-
ployed on the Cloud to a Node deployed on the Fog to
answer low-latency requirements.

e Backup: relocating a Fog service from a Fog node to
a VM in the Cloud to free resource capability on the
Fog while ensuring service continuity.

Cloud-Fog orchestration extends Cloud and Fog self-ada-
ptation capabilities slightly further. Without orchestration,
respective Cloud/Fog self-adaptation restricts reconfigura-
tion on the Cloud/Fog to remain local: the Cloud(Fog) only
adapts on the bounds of its visible/known environment, i.e.,
the Cloud(Fog) itself. On the other hand, orchestration pro-
vides both Cloud and Fog knowledge of each other, enabling
richer possibilities for adaptation. Precisely, orchestration
allows Cloud service migration to be made towards the Fog
(Offload Cloud computation to the Fog) and vice versa (Backup
Fog computation to the Cloud.

To enable the orchestration of Cloud-Fog self-adaption,
we propose model based on autonomic control with central-
ized pattern, as described in [7, 31]. This model requires
orchestrating both Cloud and Fog self-adaptation by moni-
toring data at both layers, thus gathering global knowledge
on both layers, to trigger accurate decisions at each layer in-
dividually. Figure 4 shows our model of Cloud-Fog orches-
tration for autonomic self-adaptation behaviors. The pro-
posed Cloud-Fog orchestrator is designed to operate as a
self-adaptation controller for both Cloud and Fog layers at
the same time. It is deployed on the Fog layer as a Fog
node master to ensure low-latency requirements. The Cloud-
Fog orchestrator decides of when, how and where to adapt
by triggering the right actions at Cloud and/or Fog layers
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if needed. Note that the orchestrator, as a software entity,
might be subject to failures of any kind, due to hardware or
software malfunctions, leading to a SPOF (single point of
failure) scenario where Cloud-Fog orchestration is shut-off.
To deal with issue, one can imagine monitoring the orches-
trator’s health state (response-time thresholds, data/packets
reception acknowledgement, etc.) using other software enti-
ties to restore its activity if needed. Solutions for the orches-
trator’s fault-tolerance and resilience are to be developed in
future work. The Cloud-Fog orchestrator behavior is sum-
marized as follows:

Cloud-Fog orchestrator behavior
e Monitoring the Cloud and the Fog layers.
e Merging monitoring data of both layers.

e Controlling and orchestrating Cloud and Fog self-adap-
tation, basing on shared knowledge, by applying Cloud
and/or Fog self-adaptation and orchestration strategies.

The main contributions we present in this work are: (1)
a proposition to design Cloud/Fog layers including resources
and services description, (2) a specification of self-adaptation
logic (i.e., strategies) in the Cloud/Fog layers including mon-
itoring predicates and adaptation actions, (3) a thorough ex-
pression of properties regarding Cloud/Fog applications re-
quirements and characteristics, while continuously evolving
over time and finally, a methodology to study (4) how self-
adaptive behaviors of both Cloud and Fog layers articulate
(i.e., orchestrate) in the IoT landscape to answer the het-
erogeneous demands in terms of computing resource capa-
bility, service availability and low-latency sensitivity, bas-
ing on the specified strategies. The main expected outcome
is to describe and implement self-adaptation and orchestra-
tion strategies (i.e., how actions are triggered basing on log-
ical expressions composing monitoring predicates), and ul-
timately to verify whether the system manifests or not the
designed behaviors.

3. Maude-based modeling of the Cloud-Fog
self-adaptation and orchestration

Providing executable formal specification and enabling
the automated reasoning about their inherent properties and
temporal evolution is not a trivial task. To design Cloud and
Fog self-adaptation and orchestration, the first step is to (1)
specify the Cloud-Fog environment structurally. Such spec-
ification requires identifying and defining all the elements
that categorize the entire system. Precisely, we need to de-
fine resources and services, Cloud VMs and Fog nodes and
all the relationships than link these elements (e.g., resources
quantity offered by a VM/node, set of services hosted in a
VM/node, etc.) in order to build the entire Cloud-Fog envi-
ronment. Once the system structurally defined, the second
step is to (2) enable reasoning over it by analyzing its at-
tributes to diagnose its states. The idea is enable answering
questions such as "are there enough provisioned resources
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Figure 4: A model to orchestrate Cloud-Fog self-adaptation

within a VM/node ?", "do Cloud/Fog services ensure a cer-
tain response time ?", etc. in order to diagnose global states
including underprovisioning (not enough resources), over-
provisioning (too many resources) and soon [10, 16, 15]. As
we intend to provide adaptation capabilities, the third step is
to (3) define the adaptation mechanisms. It consists of de-
scribing in a generic way how a given system configuration
(i.e., structure) may evolve to express a new configuration
incarnating the desired adaptation (such as adding/remov-
ing resources/nodes and service/VM instances), while en-
suring structural coherence and consistency. The fourth step
is to (4) define high-level strategies to describe, implement
and simulate the system’s behavior in managing the Cloud/-
Fog self-adaptations and their orchestration. In consists of
defining the orchestrator’s behavior by providing a logic to
trigger the suitable adaptation actions in response of the ob-
served states. Finally, the fifth step is to (5) provide a for-
mal methodology to study and verify the defined behaviors’
correctness while evolving over time. It consists of diagnos-
ing whether the orchestrator manifests, or not, the designed
self-adaptation and orchestration strategies, while detecting
and reporting cases where the implemented behaviors devi-
ate from the desired ones.

To proceed with all the presented steps, we need to rely
on a language which has the suitable expressiveness to cap-
ture the desired accuracy and complexity of specifications,
together with enabling their executability. We also need re-
liable tools to perform formal verification and analysis of
the designed behaviors’ correctness. These considerations
have lead us to rely on the Maude system, as an implemen-
tation of the rewriting logic, which satisfies perfectly all of
our requirements. We choose Maude for several reasons. It
answers each step requirements as follows : (1) the language
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itself is expressive enough to model both Cloud and Fog lay-
ers in terms of structure which include sets of servers, nodes,
services and resource allocation for each. (2) The language
and semantics support boolean expressions and first order
logic which are relevant to design monitoring predicates and
therefore diagnose the system states. (3) The Maude’s un-
derlying rewriting logic semantics are executable and allow
designing structural reconfiguration (i.e., adaptation actions)
with correctness-by-definition insurance. (4) The language
and rewriting engine enables designing rewrite rules of a
conditional triggering nature. Finally (4), Maude provides
a model-checker which supports symbolic state-based veri-
fication of properties (by implementing a Kripke structure).
The properties can be expressed with Linear Temporal Logic
(LTL) which is relevant to study the managed Cloud-Fog en-
vironment temporal evolution in a qualitative point of view.
Maude [6, 5] is a high-level formal specification language
based on rewriting and equational logic. A Maude program
defines a logical theory and a Maude computation imple-
ments a logical deduction using axioms specified in the the-
ory. A Maude specification is structured in two parts:

e A functional module which specifies a theory in mem-
bership equational logic: apair (£, EUA), where sig-
nature X specifies the type structure (sorts, subsorts,
operators etc.). E is the collection of possibly condi-
tional equations, and A is a collection of equational
attributes for the operators (i.e., associative, commu-
tative, etc.).

o A system module which specifies a rewrite theory as
atriple (£, EU A, R), where (£, E U A) is the mod-
ule’s equational theory part, and R is a collection of
possibly conditional rewrite rules.

To specify Cloud self-adaptation, we define a Maude func-
tional module CloudSpec (in sub-section 3.2) to specify the
Cloud structure (i.e., configuration) together with monitor-
ing predicates and actions (setters and getters) to be applied
over it (to diagnose states and apply reconfiguration actions).
Similarly, to specify Fog self-adaptation, we define a func-
tional module FogSpec (in sub-section 3.3) to describe the
Fog layer structure, monitoring predicates and operations
encoding different actions to reconfigure its structure. To
specify the Cloud-Fog orchestrator’s behaviors, we define a
Maude system module OrchControl (in Section 4) to spec-
ify conditional rewrite rules expressing reconfiguration ac-
tions to be applied in order to orchestrate Cloud-Fog self-
adaptations. We also define a Maude system module Prop-
erties which defines a Kripke structure to enable LTL-based
model-checking. A Kripke structure is a model of temporal
logic to represent the behavior of a system. It enables sym-
bolic reasoning over system states which allows tackling the
state explosion problem. Formal verification principles are
to be developed in Section 4.2.

In previous work [15], we proposed a Maude-based spec-
ification for Cloud structures and self-adaptive (elastic) be-
haviors. We defined several strategies enabling horizontal

scale elasticity, migration and load balancing at infrastruc-
ture and service levels of the Cloud layer. In this paper,
we extend the previous specifications by considering vertical
scale elasticity: we include computing resource (processing,
memory, bandwidth) representation at infrastructure (VM
instances) and application (service instances) levels. Fur-
thermore, we provide monitoring predicates as well as oper-
ations (setters, getters) linked to resource consideration. As
a part of the proposed extension, we model the Fog layer (cf.
sub-section 3.3) in terms of structure and behavior. In addi-
tion, adaptation decisions are no longer decided at the Cloud
layer. As explained before, the newly introduced Cloud-Fog
orchestrator will encode the extended behaviors (to be de-
veloped in Section 4) to control both Cloud and Fog layers’
adaptation. Also as part of the extension, we define a func-
tional module ServiceSpec in sub-section 3.1 describing the
application level of both Cloud and Fog layers.

Explaining the Maude specification modules: Construct-
ing a rewriting logic based specification via the Maude lan-

guage brings a considerable flexibility, extendability and reusabil-

ity. Following a modular approach, a system designer can
design, specify and implement their system in terms of struc-
ture (using functional modules), desired behaviors and prop-
erties (using system modules) with a highly structured method-
ology. Precisely, different part of the designed Cloud-Fog
environment namely services, resources, VMs, Fog nodes,
the Cloud and Fog layers including expression of their par-
ticular mechanisms, state predicates and properties can be
separated across different modules. A module can be in-
cluded in an other to reuse its contained specification. This
allows easily extend and/or edit any module independently.

The presented extensions if this paper (comparing to the
specifications presented in [15]) were possible simply by ex-
tending and editing the whole existing specification of Cloud
structure including services, self-adaptation behaviors and
properties. Service specifications were isolated in a sepa-
rated module which is extended to define resources descrip-
tion. The Cloud specification module was extended to con-
sider VMs’ resources offering and their linked mechanisms
and predicates. An additional functional module were pro-
vided to describe the Fog layer and its characteristics. Fi-
nally, system modules implementing the Cloud behaviors
and properties were extended to consider both Cloud and
Fog self-adaptation, orchestration and the temporal proper-
ties expressing the correctness of the designed behaviors.

Figure 5 gives a top view of our proposed modeling, exe-
cution and verification approach. We show the defined func-
tional and system modules, their contents and how they lead
to (I) enabling the designed behaviors’ execution and to (II)
verifying their correctness by model-checking. Direct links
stand for the Maude-based encoding of the different specifi-
cations required to build our model. The dashed links stand
for the include relationship (an arrow directed from A to B
means that B includes A).
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orchestration

3.1. Modeling services and resources

Services represent the software applications deployed on
the Fog and/or the Cloud layers. We consider services and
resources as the central entities in our modeling. Services
incarnate the entry point of the system: they receive the en-
vironments solicitations (i.e., requests) and their purpose is
to provide access to the resources available at the Cloud/Fog
layers. As services and resources are defined identically for
both layers, we provide a single modeling specification, i.e.,
a Maude functional module ServiceSpec for services and re-
sources in Listing 1 (shown in Appendix A). In our Maude-
based modeling, a service is given as a sort S represented by
a constructor (line 6):

S[max,rt,load:RES:state]

A resources description is given as a sort RES represented by
a constructor (line 7):

-cpu, ram,bandwidth-

Note that constructors are given with operations that have
the keyword [ctor] as parameter. For a service, the construc-
tor highlights its current amount of handled requests (load),
its current recorded response time (rt) an upper threshold
in terms of latency (max), a state (sort state) to express its
load state out of constructors stable, overloaded, unused, etc.
(line 8) and a resource description (sort RES) expressing its
requirements in terms of computing (CPU), memory (RAM)
and networking (bandwidth). Service lists (sort SL) are con-
struct recursively via the operation + which is associative

and commutative (lines 9 — 11). Such representation allow
considering sets of services to be hosted by a Cloud VM or
a Fog node. In this functional module, we also define op-
erations (lines 15 — 19) that return a service load, a service
response time, resource requirements and that can compare
two given resource specifications (i.e., >, < or =). Finally,
we define monitoring predicates that return a given service
state (line 13). A service is overloaded when its recorded
response time exceeds its defined latency upper threshold,
it is unused when its load (i.e. amount of requests) reaches
zero and it is said to be stable when its load is above 0 and
its response time is below its latency threshold.

3.2. Modeling the Cloud layer

The Cloud layer is an environment providing resources
through a set of virtual machines (VMs) that host sets of
services. The Cloud layer specifications in terms of struc-
ture constructors, monitoring predicates and reconfiguration
adaptation actions are specified in the functional module Cloud-
Spec given in Listing 2 (in Appendix A). Note that the previ-
ous specification including services, states and resource de-
scription are imported by inclusion (line 3). This inclusion
allows reusing the previously defined specifications directly.

3.2.1. Cloud structures and monitoring predicates

A Cloud physical server and a virtual machine are de-
fined as sorts CS and VM. A set of virtual machines is given
by sort VML. Each sort is built according to its associated
constructor (lines 6 — 11). A Cloud server is built by the
constructor (line 7):
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Table 1

A Maude-based rewriting approach to model and verify Cloud/Fog self-adaptation and orchestration

Cloud monitoring predicates encoded into Maude

Cloud monitoring predicate Maude encoding
@l a VM is overloaded EoverV(cs)
@2 all VMs are overlaoded AoverV/(cs)
@3 a VM is unused EunV/(cs)
@4 a VM is underused EunderV(cs)
@5 service migration is possible MIGpredC(cs)
@6  a service is overloaded EoverCS(cs)
@7 all services are overloaded AoverCS(cs)
@8 a service in unused EunCS(cs)
@9 request redirection is possible | LBSpredC(cs)
cs: the managed Cloud layer of sort CS

Table 2

Cloud adaptation actions encoded into Maude

Cloud adaptation actions Maude encoding
cl deploy new VM newV/(cs)
c2  destroy VM Vin(cs)
c3  migrate service MIGc(cs)
¢4 deploy new service newCS(cs)
¢5  destroy service SinC(cs)
c6  redirect request LBSc(cs)
¢7  add resource to VM scaleUpV/(v)
¢8 remove resource from VM scaleDownV/(v)
¢s: the managed Cloud layer of sort CS
v: virtual machine of sort VM

CS<x/VML>
A virtual machine is given by the constructor (line 8):
VM{y,SL:RES:state}

In a Cloud server specification, x encodes the Cloud up-
per hosting threshold in terms of VMs and VML, similarly to
SL, is a list of VMs. For a virtual machine, y encodes its
upper hosting threshold in terms of services. The term RES)
expresses resources offering within a VM in terms of CPU,
RAM and bandwidth. VM states are calculated similarly to
services, i.e., proportionally to their load and upper hosting
thresholds. A VM is underused if its allocated resources
given by the getter operation (in line 21) are not fully used. It
is overloaded if its load (i.e., amount of hosted services) ex-
ceeds its hosting upper threshold (y). The VM is unused if its
load reaches zero. These values are given by operations giv-
ing information about the system such as the Cloud server’s
load, i.e., number of hosted VMs (line 19) and a VM’s load,
i.e., number of hosted services (line 20). To calculate states,
we define a set of monitoring predicates (in first-order logic)
which give information about the managed Cloud layer con-
figuration. For instance, AoverV() is a predicate for “all VMs
are overloaded” and EunCS() is a predicate for “there exists
an unused cloud service instance” (lines 12 — 16). Table 1
gives the correspondence between Cloud monitoring predi-
cates (@1 — 9) and their encoding into the CloudSpec func-
tional module.

3.2.2. Cloud adaptation actions

In the functional module (i.e., Listing 2) adaptation ac-
tions are defined as rewrite operations which operate over
the Cloud layer sort terms (lines 23 — 26). The different
actions express atomic adaptation behaviors for horizontal
scale elasticity (i.e., Cloud services deployment, migration
and replication and VM replication), for load balancing (i.e.,
request redirection) and for vertical scale elasticity (i.e., VMs
resource resizing). For instance, newV()/Vin() are used to
deploy or remove a VM, MIG()/LBS() are for migration and
load balancing and scaleUpV(), scaleDownV() are for adding/
removing resource to/from a VM. Table 2 gives the corre-
spondence between the possible Cloud adaptation actions
(c1 — 8) and their encoding into Maude.

3.3. Modeling the Fog layer

The Fog layer is structurally similar to the Cloud layer.
The Fog environment provides resources through a set of
Fog nodes that host sets of services. In this sub-section, we
define the Fog layer structure and adaptation actions in the
functional module FogSpec (cf. Listing 3 in Appendix A).
Similarly to the previously provided specification, we reuse
the services specification and resources description (sorts S,
SL, RES and state) from the previous specification in Listing
1 by inclusion (line 3). In addition, we define Fog structure
constructors, monitoring predicates, access operations and
atomic adaptation (reconfiguration) actions.

3.3.1. Fog structures and monitoring predicates

The Fog layer and a Fog node are defined as sorts FS
and N. A set of nodes is given by the term NL. Each sort is
built with its associated constructor (lines 6 — 8) to exhibit
its configuration. Similarly to the Cloud layer structure, the
Fog layer (expressed as cluster of Fog nodes) is built by the
constructor (line 6):

FS<x/NL>
A Fog node is given by the constructor (line 8):
N{y,SL:RES:state}

In a Fog cluster, the term x gives the upper hosting thresh-
old in terms of nodes and NL is a list of nodes. For a Fog
node, y encodes its upper hosting threshold in terms of ser-
vices (sort SL). The term RES expresses available resources
within a node in terms of CPU, RAM and bandwidth. Nodes
states, similarly to VM, are calculated proportionally to their
load and upper hosting thresholds. A node is underused if
its allocated resources given by the getter operation in line
20 are not fully used. It is overloaded if its load (i.e., amount
of hosted services) exceeds its hosting upper threshold (y).
The node is unused if its load reaches zero. These values
are given by operations giving information about the system
such as the Fog layer’s load, i.e., number of online nodes
(line 18) and a node’s load, i.e., number of hosted services
(line 19). To calculate states, we define a set of monitor-
ing predicates that give information about the managed Fog
layer configuration. For instance, AoverN() is a predicate for
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Table 3

A Maude-based rewriting approach to model and verify Cloud/Fog self-adaptation and orchestration

Fog monitoring predicates encoded into Maude

Fog monitoring predicate Maude encoding
@10 a node is overloaded EoverN(fs)
@11 all nodes are overlaoded AoverN(fs)
@12 a node is unused EunN(fs)
@13 a node is underused EunderN(fs)
@14 service relocation is possible MIGpredF(fs)
@15 a service is overloaded EoverFS(fs)
@16 all services are overloaded AoverFS(fs)
@17 a service in unused EunFS(fs)
@18 request redirection is possible | LBSpredF(fs)
fs: the managed Fog layer of sort FS

Table 4

Fog adaptation actions encoded into Maude

Fog adaptation actions Maude encoding
f1 turn-on node onN(fs)
f2 turn-off node offN(fs)
f3 migrate service MIGf(fs)
f4 deploy new service newFS(fs)
f5 destroy service SinF(fs)
f6  redirect request LBSf(fs)
fs: the managed Fog layer of sort FS

“all nodes are overloaded” and EunFS() is a predicate for
“there exists an unused fog service” (lines 12 — 15). Table
3 gives the correspondence between Fog monitoring predi-
cates (@10 — 18) and their encoding into the FogSpec func-
tional module.

3.3.2. Fog adaptation actions

Fog adaptation actions in the functional module FogSpec
(i.e., Listing 3) are defined as rewrite operations which op-
erate over the Fog layer sort terms (lines 22 — 23). The dif-
ferent actions globally express atomic adaptation behaviors
for Fog services mobility (relocation) and replication and
nodes switching on/off. For instance, onN()/offN() are used
to switch on/off a node and MIGf{)/LBSf{) are for service mo-
bility and requests redirection. Table 4 gives the correspon-
dence between the possible Fog adaptation actions (f1 — 6)
and their encoding into Maude.

4. Implementing and verifying Cloud-Fog
self-adaptation and orchestration

This section describes the Cloud-Fog orchestrator’s be-
haviors presented in Section 2. Basing on the proposed spec-
ifications for services, Cloud and Fog layers in Section 3,
the idea is to feed the orchestrator with the different mon-
itoring predicates thus producing global knowledge about
the entire Cloud-Fog environment. From the periodically
collected observations, the goal is to perform local comple-
mentary adaptations (at Cloud and/or Fog) layers in order
to achieve a high-level adaptation, i.e., following the intro-
duced strategies in Section 2. In sub-section 4.1, we give
the Maude-based specification of the Cloud-Fog orchestra-

tor’s behavior. We give conditional rewrite rules that ex-
press guarded reconfiguration implementing the presented
strategies. Precisely to define a logic describing when and
how the previously identified atomic actions are triggered.
In sub-section 4.2, we express temporal properties of the
specified behaviors using the linear temporal logic (LTL)
and discuss their verification capabilities using the Maude-
associated model-checker.

4.1. The Cloud-Fog orchestrator’s behavior

To define the Cloud-Fog orchestrator’s behaviors, we pro-
pose a set of conditional rewrite rules in a Maude system
module OrchBehavior in Listing 4 (in Appendix A). A con-
ditional rewrite rule is given as follows:

crl[R] : term => term'i f(condition).

A rule (crl) named R describes how the previously defined
actions are triggered. It rewrites the left-hand side term of
the rule into its right-hand side term' on which an action
is applied. A conditional rewrite rule is triggered when its
specified condition is satisfied. Conditions are expressed
as disjunctions and/or conjuctions of the previously defined
monitoring predicates for Cloud, Fog layers and services.
Note that the previous functional modules are imported by
inclusion (line 3). To allow reasoning on the entire Cloud-
Fog environment, we define a sort ENV describing the or-
chestrated Cloud-Fog environment through the constructor
cloud || fog (line 6). This representation allows applying
monitoring predicates and conducting rewrites (i.e., recon-
figuration) on both layers separately or simultaneously.

The previously defined actions’ conditional triggering is
described for Cloud layer in lines 14 — 37 and for Fog layer
in lines 38 — 56. To improve the readability, conditional
rewrite rules hold the same action labels as shown before.
Rewrite rules specific to Cloud are named ci (cf. Table 2)
and fi for the Fog (cf. Table 4). The symbol i refer to a
rule’s number. Variables of different sorts are declared in
lines 7 — 13 for symbolic interpretation of elements in the
rewrite rules. Notice that adding service instances, VMs and
switching on Nodes have two different implementations with
suffixes Low and Hi. This modeling is directly inspired from
previous work [14] where we define different models for low
and high resource availability. We apply this approach for
Cloud servers and services as well as for Fog nodes and
services provisioning. To implement Cloud-Fog orchestra-
tion actions, we define two conditional rewrite rules (lines
57 -176):

o Offload: thisrule named o1 offloads the Cloud layer by
relocating a service instance into the Fog layer. It con-
sists of migrating a service from a VM in the Cloud to
a node in the Fog. Migration is made when the initial
VM host is overloaded or fails ensuring the service’s
requirements, and if the potential Fog node host car-
ries enough resource to answer the service’s require-
ments. This condition will be referred to as ¢19.
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e Backup: the rule o2 allows using the Cloud layer as a
backup solution if the Fog layer fails meeting resource
requirements. It allows migrating a service instance
from a Fog node to a Cloud VM if all nodes are over-
loaded and if the VM provides enough resource to en-
sure the service’s requirements. This condition will
be referred to as ¢20.

As part of our modeling effort, notice that we designed
the rewrite rules to be complementary and composable. Pre-
cisely, the rules’ triggering conditions are pretty much exclu-
sive. It means that for a given set of monitoring predicates
which are satisfied, the rules that can be triggered will not
result in contradictory actions. For example, load-balancing
is applied when there is an unused instance service and an
overloaded service instance. But for load-balancing to be
ever possible, it requires that (1) creating a new service in-
stance is not possible if there is an unused service instance
and that (2) an unused service instance cannot be deleted if
there is an overloaded one. This modeling approach enables
producing action plans that can draw a high-level adaptation
(i.e., a strategy). In the next sub-section, we explain our for-
mal verification approach to study whether such high-level
strategies are indeed ensured.

4.2. Formal verification of the orchestrator’s
behavioral correctness

Formal verification consists of ensuring the defined be-
haviors correctness. Precisely, it consists of verifying the
introduced Cloud-Fog orchestrator’s ability to manifest the
described strategies. To proceed, we propose a LTL state-
based model-checking technique. The first difficulty here is
controlling the set of possible system states (i.e., configura-
tions). The proposed Maude specification allows modeling
any configuration in a Cloud/Fog environment, which results
in a potentially infinite set of structural system states. Thus,
we use a Kripke structure to identify symbolic states to man-
age the set of states complexity and to tackle the state explo-
sion problem. Symbolic state allows reasoning on a system
configuration by focusing only on the predicates (i.e., the
specified monitoring predicates @1 — 20) that this configu-
ration satisfies. Then we define a set of LTL propositional
formulas to describe the desired transitions between those
states. The LTL formulas express the expected orchestrator’s
high-level behaviors (i.e., strategies) to be achieved for both
Cloud and Fog layers. They describe the system’s temporal
evolution basing on the system’s symbolic states evolution
over time.

4.2.1. Specifying the Cloud-Fog orchestrator’s
behavior

A Kripke structure is a calculus model of temporal logic
[2] which allows to identify symbolic states and define de-
sired transitions between them. Given a set AP of atomic
propositions, a Kripke structure is formally defined [5] as a
triple A = (A, =, L), where A is a set of symbolic states,
— 4 IS a transition relation, and L : A — AP is a labeling
function associating to each state a € A, a set L(a) of atomic

propositions @i in AP that hold in a. LT L(AP) denotes the
formulas of the propositional linear temporal logic. The se-
mantics of LT L(AP) is defined by a satisfaction relation:
A,aE ®, where® € LTL(AP).

The set of symbolic states A express classes of equiva-
lence gathering numerous structural configurations with re-
spect to the defined state predicates [17], i.e., @1 — 9 for the
Cloud layer, 10 — 18 for the Fog layer and ¢19 — 20 for the
Cloud-Fog environment. Notice that different Cloud(Fog)
configurations can have the same state in terms of resources
offering, VMs(nodes) state of under/overprovisioning or global
state of load-balancing at application/infrastructure levels.
In other terms, a symbolic state allows reasoning on a sys-
tem configuration by focusing only on the predicates that
this configuration satisfies. For example, consider two Cloud
configurations C/ and C2. C1 hosts 3 overloaded VMs and
C2 hosts 20 overloaded VMs. CI and C2 express two dif-
ferent structural configurations. Nevertheless, both are con-
sidered of the same symbolic state as both satisfy the sys-
tem monitoring predicate @1 expressing "all VMs are over-
loaded". To avoid using additional identifiers for the sym-
bolic states tags regarding the atomic propositionin AP (i.e.,
monitoring predicates @i) and to ease the understanding of
the paper, by abuse of language we will consider that A =
AP meaning that a symbolic state a; corresponds to a satis-
fied monitoring predicate @i or ai = @i.

Now that symbolic states are identified, we provide the
set of Linear Temporal Logic (LTL) propositional formulas
LT L(AP) to express the self-adaptation and orchestration
strategies for Cloud and Fog layers. LTL as an analytic sup-
port is particularly powerful. It is expressive enough to ac-
curately describe (in a declarative fashion) a system’s tem-
poral evolution in terms of system states evolution. It is
also generic enough to describe desired high-level goals, i.e.,
strategies. Our defined formulas globally express the live-
ness fundamental property (i.e. the insurance that a given
state is reachable) which can be interpreted as a qualitative
indicator of behavioral correctness. Each formula describes
the Cloud-Fog orchestrator’s high level behaviors basing on
the global environment temporal evolution. The evolution is
expressed in terms of time traces focusing on system states.
The states are expressed with the previously introduced @i
predicates. Table 5 lists the main LTL symbols and opera-
tors that will be used in this paper. Further detail about LTL
syntax and semantics can be found in [23].

We give LT L(AP) as three sets of LTL formulas P, Pr, Py
describing Cloud, Fog self-adaptation and orchestration prop-
erties respectively as follows:

P ={ ScaleOut{CVM’S} s Scale]n{CVM’S} ,ScaleU P,

ScaleDownc, Load Balanceq, Migrate}

{N.S}
F

Load Balancep, M obilityr}

{N,S}

Pp ={Provision ,DeprovisionF =

Py ={Of floadc, Backupr}
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The proposed LTL property formulas are defined as fol-
lows and are explained in Appendix B:

ScaleOutl™ = [O[(92 V (91 A—¢3) - O=e2]| (1)
ScaleOurg = O[(@7 V (96 A=@8)) = O-97]  (2)
ScaleIn{™ = [O[((@3 V 4) A=pl) = O3] (3)
Scaleln? = O[(98 A 7p6) = O8] 4)
ScaleU P = 0|2V (9l A=(@3V p4)) > O-ol] (5)
ScaleDowne = [[(p4 A —~@l) — Q-4 (6)
Load Balancec = [[((96 A 98) » O@9) U'=¢6] (7)
Migratec = O[(@1 A(@3V @4) > Op5) U=pl] (8)
Provisiony =[[(@11V(910A=¢12)) > Oell] (9)
Provision’. = ([(@16V (915 A-¢17)) > O-pl6] (10)
Deprovisiony = [O[(@12Ve13)A-@10)—O-pl12] (11)
Deprovisiony, = [[(@17 A =¢15) = $mel7| (12)
Load Balance = [J[((915A¢17)—>Op18)U-9p15] (13)

Mobilityy = O[(@11A(@12Vp13)»0pl4) U -e10] (14)

Of fload: = [:l[((pl A(pl2V @l3)
- 0@l UV (=@l v @ll)] (15)

Backupy = |:|[(((p11 A@2)
- 0920) U (-pl1 Vv 92)] (16)

In the Linear Temporal Logic semantics, a formula ex-
presses a property as a temporal description in terms of states
evolution. Precisely, it describes how a given system is ex-
pected to evolve over time to achieve a distinct behavior us-
ing the suitable temporal operators. During a system’s exe-
cution, a LTL formula (describing a desired behavior) tells
if the analyzed system manifests or not that particular behav-
ior. A LTL property (formula) is ensured or satisfied if there
exists a path within the system’s execution, from a given ini-
tial state, which follows the specified temporal description

Table 5
used LTL operators and symbols

Meaning
conjunction / and
disjunction / or
implies
negation / not
globally / always
eventually or "in the future"
next time

LTL operator/symbol

Slokeldl 4| <>

until

[23]. In the context of self-adaptive systems, a system is
subject to solicitations and changes that affect its state. The
self-adaptation mechanisms allow such system to cope with
changes by triggering actions in any kind. In our model for
Cloud/Fog self-adaptation and orchestration, the proposed
LTL formulas allow describing the desirable system behav-
iors over time. Precisely, each LTL formula expresses a se-
quence of system states describing its temporal evolution,
and finally, the satisfaction of such sequence indicates the
corresponding strategy satisfaction, or, in other words, the
qualitative correctness of the designed behaviors.

The specified properties allow verifying if the designed
strategies (for Cloud/Fog self-adaptation and Cloud-Fog or-
chestration) are indeed applied during the system execution
as follows:

e In the Cloud layer (i.e., P properties), ScaleOut/ In
refer to horizontal scale elasticity: where instances of
services and/or VMs are provisioned/ deleted. ScaleUp/
Down refer to vertical scale elasticity: where VMs
are resized in terms of resources (by adding/ remov-
ing computing resources). Migrate refers to migration
mechanisms where service instances are moved across
VMs and LoadBalance refers to redirecting requests
in order to equilibrate service instances’ load [13, 16].

e In the Fog layer (i.e., Pr properties), Provision/ De-
provision refer to switching on/off Fog nodes and/or
adding/ removing service instances. LoadBalance is
about requests redirecting and Mobility refers to Fog
services mobility (relocation) across Fog nodes.

e The orchestration behaviors of both layers (P, proper-
ties), Offload refers to moving a service instance from
the Cloud layer to the Fog layer and Backup refers to
moving a service instance from the Fog layer to the
Cloud.

At this point of our presented contributions, the provided
rewriting logic Maude-based specification implement the Cloud
Fog orchestrator’s behaviors and the introduced LTL formu-
las describe their qualitative correctness. Now we turn our
attention towards the executable automated analysis and the
formal verification of these behaviors to check whether they
are ensured or not in our proposed implementation.
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4.2.2. Verifying the orchestrator behavior’s
correctness

Maude comes with a built-in model-checker that fully
supports the Kripke and LTL semantics. The model-checker
is used to conduct state-based verification [2] of the sys-
tem’s execution, basing on the defined LTL formulas. Pre-
cisely, the model-checker verifies the satisfaction of the de-
fined LTL property formulas during the system’s execution.

To enable the Maude model-checker reasoning over the
designed Cloud-Fog self-adaptation and orchestration behav-
iors modulo the specified LTL property formulas (express-
ing strategies), it has to be configured by defining a system
module for properties definition. Such a module directly im-
plements the Kripke structure symbolic states and encodes
the LTL property formulas into the Maude language [6, 15].

In the module Properties (listing 5) shown in Appendix
A, we give the principles of encoding the Kripke labeling
function of symbolic states using conditional equations and
we directly encode the introduced LTL formulas with equa-
tions. Precisely, from a given Cloud/Fog configuration (sorts
Cs/Fs as subsorts of the generic sort state in line 4), we la-
bel (using the symbol (|=) a configuration symbolically to a
proposition pi if the associated predicate @i (thus its Maude
encoding predicate as shown in Tables | and 3) is true or sat-
isfied (lines 16 — 19). In addition, the main used LTL oper-
ators (as shown in Table 5) are directly encoded into Maude
as follows (lines 26 —29) : the conjunction operator A is en-
coded as /\, disjunction V is encoded as \/, the negation —
is encoded as ~, the implication operator — is encoded as ->,
the henceforth operator [] is encoded as [1, eventually ¢} is
encoded as <>, the next state operator Q is encoded as 0 and
finally, the until operator U is encoded as U.

As inputs, a system designer gives the model-checker an
initial state -which is expressed structurally using the pre-
viously defined constructors- and a LTL property formula
® € P- U Pr U P, to be checked from that state. As out-
puts, the model-checker shows True if the property is en-
sured during the system’s execution. Otherwise, it prints a
counter-example showing the execution path that has lead to
the violation of the property. Note that the execution path is
shown as a succession of the triggered rewrite rules (among
the defined rules in Section 4.1).

Graph based representation of the system behavior:

A Kripke structure models the desired behavior of a system
and can be seen as a graph, or more accurately as a La-
beled Transition System (LTS) [25] where nodes represent
the symbolic states of the system and where edges represent
state transitions and events. To provide such representation,
we give the LTS based modeling of the system’s behavior
from the orchestrator point of view, being the principal con-
troller in our modeling proposition. Precisely, we give in
Figure 6 the Cloud layer based vision of the system’s behav-
ior, and in Figure 7, the Fog layer based vision. In terms
of states, notice that the specified monitoring predicates ex-
press only undesirable system states. Thus, in the absence of
satisfied predicates € @1 —20, the monitored Cloud (or Fog)

system is said to be in a stable symbolic state (i.e., where no
adaptation is needed) which incarnates our main desirable
state for both Cloud/Fog layers. The transitions are cate-
gorized with the implemented rewrite rules describing the
orchestrator’s behavior (i.e., c1 — 8, f1 — 6 and ol — 2).
As requests traffic determines the system’s state evolution,
events stand for the requests coming and exiting the system
(input/output) shown as in/out transitions.

To simplify the visual representation of the system be-
havior giving its complexity and to ease the readability of
the proposed implementation, we have gathered the differ-
ent symbolic states categorized by the predicates @1 — 20
into states of a higher level of abstraction.

In the provided representations, we focus on the high-
level desirable and undesirable states in terms of resources
provisioning. More accurately, we focus for both layers on
the state of Underprovisioning which requires provisioning
more resources (via the Scale-Out/ Up Cloud strategies and
the Provisioning Fog strategy), the states of Overprovision-
ing which requires freeing the unused ones (via the Scale-
In/ Down Cloud strategies and the Deprovision Fog strat-
egy), the state of Unbalancing which requires equilibrating
the system’s load at application or infrastructure levels (via
the Migration/ Load-Balance Cloud strategies and the Mo-
bility/ Load-Balance Fog strategies), the state of Orches-
tration which requires triggering the proposed orchestration
mechanisms (using the Cloud-Fog Offload/ Backup strate-
gies) and finally, the desired Stable state where no particu-
lar self-adaption nor orchestration strategy is required as no
monitoring predicate is satisfied.

For Cloud layer based vision of the System, the higher-
level states are given with Cy, = {Sc,Uc, Oc, Bc,Orch}.
Each higher-level state (excluding Orch) is categorized by
the satisfaction of at least one Cloud-specific monitoring pred-
icates @1 — 9 as follows:

e Stable: Sc =0

e Underprovisioning: Uc = {@l, 2, 96, 7}
e Overprovisioning: Oc = {3, p4, p8}

e Unbalancing: Bc = {@5, 9}

Similarly, the higher-level states for the Fog layer based
vision are given with Fy, = {Sf,U f,Of, Bf,Orch} where
each state (excluding Orch) is categorized by the satisfac-
tion of at least one Fog-specification monitoring predicates
@10 — 18 as follows:

o Stable: Sf =0

e Underprovisioning: U f = {910, ¢11, @15, 16}
e Overprovisioning: O f = {@12, p13,pl17}

e Unbalancing: Bf = {@14, 18}

Finally, the state Orch is common to both the Cloud and
Fog layers as it is categorized by monitoring both layers, i.e.,
by the satisfaction of at least one of the Cloud-Fog monitor-
ing predicates @19 — 20 as follows:
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in

{ol, out}

{cl, ed, c7, out}

{c3, oé, out}

{c3, cé, i, out}

Figure 6: LTS-based representation of the Cloud layer states and transitions from the orchestrator’s perspective

{fl, f4, out}

113, fi5, out}

{3, 6, n, out}

Figure 7: LTS-based representation of the Fog layer states and transitions from the orchestrator’s perspective

e Orchestration: Orch = { @19, 20}

In the shown representations, the stable state for both
Cloud/Fog systems is initial, but any state can be the initial
one as it is determined by monitoring. This shows the abil-
ity of the orchestrator into controlling the Cloud and/or Fog

layer self-adaptation and orchestration strategies towards reach-

ing, returning or converging towards their respective stable
and desirable state.

5. Case study: a smart city scenario

To illustrate our solution for the Cloud/Fog self-adaptation
and orchestration, we show how the introduced modeling
and analysis approach can be applied through a case study
in a Cloud/Fog-based smart city scenario.

5.1. The studied Cloud-Fog system

Consider a smart city application for security and traffic
monitoring analysis as shown in Figure 8. The application
is deployed on a highway parcel crossing two countries or
states border. It consists of a video processing system de-
signed as a set of micro-services distributed across different
Fog nodes and a service deployed on the Cloud layer. On

the Fog layer, the application deploys a service (S1) which
records vehicles’ speed and frequency, and a service (S2)
recording license plates. Different surveillance cameras are
deployed on the border crossing and speed sensors are dis-
tributed across the highway. The purpose of such a system is
to analyze the traffic’s fluidity through the service S1, and to
analyze license plates to report stolen vehicles through the
service S2. The speed sensors collect the number of vehi-
cles and their speed then transmits data to S1. The cameras
take pictures of the license plates then transmit data to S2 for
pre-processing (e.g. tagging the pictures of contextual data
such as location, date, etc.). The service S2 is linked to a
service (S3) which is deployed on a dedicated server (VM)
in the Cloud layer. The service S3 performs image process-
ing to extract the textual form of the license plates. It then
interacts with a Cloud-based database in search for stolen ve-
hicles from the received license plates and reports matches
to the authorities. We consider that both S1 and S2 require
moderate amount of resource to operate while S3 needs con-
sequent resource capacity. In terms of locality deployment,
the Cloud layer consists of a VM deployed on a distant dat-
acenter, and the Fog layer consists of back-end servers (Fog
nodes) deployed on a nearby facility (such as a border office).
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Cloud layer
(distant datacenter)

data transmission >

Fog layer
(nearby facility) -

data

transﬁssion D&m
(‘ )) (( camera ﬁ

(oot - 12

speed detector

| | N @

Figure 8: Highway traffic analysis: a Cloud/Fog-based smart
city case study

Therefore, in terms of networking capability, the Cloud layer
is characterized with relatively poor data transmission per-
formance and low bandwidth (as it relies on the internet).
On the other hand, the Fog layer is accessible via a LAN
(or WAN) network which results in better data transmission
performance and a better bandwidth. To analyze such sys-
tem’s performance in efficiently analyzing the traffic (i.e.,
in reasonable delays), it is clear that it depends on the traf-
fic itself. During week-days and regular working days, the
border-crossing traffic is generally known to be moderate.
On week-ends or holidays however, it is more likely to be
of an important fluctuating activity. Through this system,
we show how our modeling approach enables this smart city
Cloud-Fog based application to adapt to traffic activity, ac-
cording to the designed behaviors. We propose a scenario
that illustrates the approach principle.

5.2. Adaptation scenario in high traffic activity
When the traffic activity rises, leading to a dense traffic
jam, a concern particularly rises: data transmission between
S2 and S3. When the number of vehicles rises, cameras
take an important number of license plates pictures. After
pre-processing, pictures need to be transmitted to the Cloud-
based S3 service. This scenario creates an important bottle-
neck in the entire system as a result of the important data
to be sent to the Cloud-based service S3 for the Fog-based
service S2. On the other hand, if we consider that speed
sensors transmit data only from a given speed threshold, the
service S1 becomes unused in a traffic jam scenario (thus, it

Standard (initial) configuration

loT
layer

]

7

I:[> Small data transmission

Large data transmission
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Low resource
consumption

High resource
consumption

Figure 9: The system's default (initial) configuration

unnecessarily occupies computing resources). Such an ob-
servation of having an overloaded VM at Cloud layer and
an unused/underused node at Fog layer is a typical situation
that requires offloading the Cloud VM by relocating a ser-
vice instance (S3) to the Fog node. At the same time, the
Cloud layer can operate as a temporary backup solution for
service availability. It is possible to temporarily move S1 to
the Cloud in order to free Fog resource for S3.

Maude-based modeling of the system configuration: via
our proposed modeling approach, the system designer/ad-
ministrator can express any configuration within the presented
Cloud-Fog system using the described Maude-based syn-
tax. Ultimately, the designed can witness the provided self-
adaptation and orchestration behaviors by simulating the sys-
tem’s execution from any configuration via the Maude rewrit-
ing engine. Furthermore, they can qualitatively verify the
satisfaction of the defined self-adaptation and orchestration
strategies via the Maude model-checker.

The described system standard or initial configuration is
shown in Figure 9. It focuses on the nature of data trans-
missions and the services requirements. The Maude-based
encoding of this Cloud-Fog configuration is given as follows

CS<1/VM{1,S[maxS3,qS3,rtS3:ReqS3:over]:ReV1:over> ||
FS<1/N{1,S[maxS2,9S2,rtS2:ReqS2:over]:ReN1:over}
| N{2,S[maxS1,qS1,rtS1:ReS1:unused]:ReN2:under}>

K. Khebbeb et al.: Preprint submitted to Elsevier

Page 14 of 22



A Maude-based rewriting approach to model and verify Cloud/Fog self-adaptation and orchestration

Service S3 is hosted in the Cloud VM, service S2 is de-
ployed within a Fog node (N1) and S1 is hosted in another
Fog Node (N2). With respect to the defined constructors, for
each service S i, maxS i refers to its maximum response time
threshold, gs i gives the number of handled requests, Reqs i
gives its requirements in terms of resources and rtS i gives
its current response time. Similarly, Re(V/N) i gives for each
VM/Fog node its provided quantity of resources.

Explaining the designed behaviors: To understand the
designed rewriting-based solution, we explain the orchestra-
tor’s reasoning process. Fist, the orchestrator monitors both
Cloud and Fog layers to diagnose a set M of the satisfied
monitoring predicates @i at every moment i. We assume that
the Fog node containing the S1 service resource (ReN2) are
sufficient to host the S3 service (i.e., ReN2 > ReqS3). We
also assume that both S2 and S3 services are overloaded due
to the explained bottleneck situation, i.e., rt3 > max.S3 and
rt2 > max.S2. By monitoring the presented initial configu-
ration, the set of satisfied monitoring predicates is given with
M1 ={pl,¢7, 910,913, pl7, ¢19}.

After diagnosing the system’s state, the orchestrator trig-
gers a self-adaptation action among cl — 8 (at the Cloud
layer), f1 — 6 (at the Fog layer) and ol — 2 (for Cloud-
Fog orchestration). As specified in the Cloud-Fog orches-
trator’s behavior (in the functional system OrchBehavior),
notice that the only action than can be triggered is the o/
rewrite rule (i.e., offloading the Cloud to the Fog).

When the rule is applied, it produces the following con-
figuration:

CS<1/VM{1,nils:ReV1:unused}> ||

FS<1/N{1,S[maxS2,qS2"',rtS2':ReqS2:over]:ReN1:over}
| N{2,S[maxS1,qS1',rtS1"':ReS1:unused]
+S[maxS3,qS3',rtS3':ReqS3:over]:ReN2:over}>

Notice that the system is rewritten to move the service
S3 from the Cloud VM to the less loaded Fog node, making
all Fog nodes to be overloaded and the Cloud VM to be un-
used. From this configuration, the set of satisfied monitoring
predicates evolves to: M2 = {@3, @11, 17}. In this case,
the rewrite rule o2 (backup the Fog to the Cloud) becomes
applicable. Its triggering results in the following configura-
tion, which incarnates the desired configuration in the high
traffic scenario (as shown in Figure 10):

CS<1/VM{1,S[maxS1,qS1"',rtS1':ReS1:unused]:ReV1:stable}> ||
FS<2/N{1,S[maxS2,qS2",rtS2":ReqS2:over]:ReN1:stable}
| N{2,S[maxS3,qS3",rtS3":ReqS3:over]:ReN2:stable}>

After this adaptation, both S2 and S3 are now hosted
within the same network leading to considerably speed-up
data transmission between them. Thus, we will consider
that S2 and S3 respective response time drops (i.e., rt.52" <
maxS?2 and rtS3" < maxS3) as the data transmission bot-
tleneck no longer exists, making the Fog host nodes to be in
a stable state of provisioning. The set of monitoring predi-

System configuration after adaptation

I:> Small data transmission

Large data transmission
in fast network

Low resource
consumption

High resource
consumption

Figure 10: The system’s configuration after adapting following
the specified behaviors

cates evolves to M3 = {17} as the unused service S1 is de-
tected. As soon as a speed sensor sends data to S1, monitor-
ing would show M = {J, meaning that no particular anomaly
is detected, thus no adaptation is needed.

In terms of qualitative verification via the Maude model-
checker, the system designed provides the initial configura-
tion encoding and a property formula € LT L(AP) as pre-
sented in Section 4.2.1. Particularly, notice that the first
adaptation (rewrite rule o/) satisfies the LTL formula
Of fload.: it made the system evolve from a global state
(described with the set of predicates M 1) where @1, @13
thus @19 held, to a system state (M 2) where @11 holds and
@1 no longer holds (=). Similarly, the second adaptation
(rewrite rule 02) satisfies the LTL formula Backupy: it made
the system evolve from a global state (M 2) where @11 held
and @2 did not, to a system state (M 3) where @11 no longer
holds.

6. Related work

In the few last years, many research papers studied the
problem of dynamic resource provisioning in the Cloud-Fog
environments. Here we discuss some of this work then po-
sition our contribution accordingly. Overall, the currently
published work highlight the Cloud-Fog resource provision-
ing principles by proposing system models, architectures and
optimization algorithms. The different available contribu-
tions go towards the optimization of response time of Fog-
enabled applications with awareness of network and server
usage.
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Authors of [22] propose a novel method for service de-
ployment on Fog landscape focusing on application’s response
time, network congestion and server usage. They propose
policies for Cloud and Fog service deployment strategies in
order to control service placement using resource and re-
sponse time constraint formulas. They provide an execution
plan to achieve "best service deployment” in order to pro-
vide trade-off among minimizing network congestion, min-
imizing application’s response time and minimizing Cloud
layer’s server usage. Authors provide simulation-based ex-
perimentation to motivate their approach’s feasibility and re-
sults. In [26], authors study the location of Fog nodes in Fog-
Cloud infrastructure. The main approach’s goal is to decide
on the locations where Fog nodes should be deployed and
how each node should configured in terms of resource ca-
pacity. They provide a multicriteria decision model based
on multi-objective constraints to optimize Fog nodes place-
ment and usage. The solution’s goal is to minimize overall
infrastructure costs while maximizing overall service perfor-
mance. Authors provide a simulation-based experimental
study to show their solution performance in improving Fog
service and reducing cost. In [29] authors present a concep-
tual framework for resource provisioning in IoT/Fog land-
scape. They formalize an optimization problem to design
delay-sensitive utilization of the Fog layer’s computational
resources. They propose a system architecture highlighting
a Cloud-Fog middleware as a central unit which manages re-
source provisioning: by controlling the Cloud layer and by
interacting with a Fog orchestration controller. The central
middleware’s purpose is processing into the layer Cloud non
delay-sensitive tasks or tasks that cannot execute in the Fog
layer. Authors extend their approach in [28] to detail the ser-
vice placement optimization and the Fog orchestration con-
siderations. The approach is concertized in [27] to enable
real-world implementation of the proposed solution through
a framework named FogFrame. In their work, authors study
Cloud-Fog resource management using several approaches
(a greedy first fit heuristic, a genetic algorithm, and an exact
optimization method). The results showed different behav-
iors and cost/performance trade-offs by optimizing service
placement in the Clouf-Fog environment. These research
works [22, 26, 27] give significant information to correctly
design Cloud-Fog environments through system models and
architectures. They give substantial guidelines to accurately
implement Fog resource management through strategies and
constraints. Finally, they highlight relevant methods and ap-
proaches to thoroughly conduct quantitative evaluation of
the designed behaviors.

In this paper, we tend to formalize the extracted tech-
niques in order to enable Cloud-Fog resource management.
We model the Cloud-Fog environment in terms of structure
(as apool of resource) and behavior, by reproducing the main
methods including service mobility in the Fog, service mi-
gration in the Cloud, load-balancing, etc. We inspire from
the various presented formulas and constraints to design con-
ditional behaviors which lead, for example, to deploy a ser-
vice in the Cloud rather than the Fog and vice-versa. Through

our formal approach, we tend to show that how all these be-
haviors can be ensured in an autonomic manner and therefore
be qualified as self-adaptation. We introduce a Cloud-Fog
orchestrator which manages this self-adaptation by control-
ling when, how and where to trigger the proper actions bas-
ing on both Fog and Cloud observations. Our main focus is
to conduct qualitative verification of the designed behaviors
(i.e., study their correctness). The proposed Cloud-Fog or-
chestrator behaviors can be simulated as they are executable
through the Maude-based rewriting system. The introduced
temporal properties in Linear Temporal Logic allow verify-
ing the orchestrator’s behavioral correctness via the Maude-
integrated model-checker.

Authors in [30] present Fog orchestration as a technique
leading to resource management in the Cloud-Fog environ-
ment. They introduce the main issues, challenges and re-
search directions. Authors put the basis of Cloud-Fog or-
chestration in order to ensure the low-latency requirements
of IoT environments. Precisely, they highlight a list of cri-
teria that need to be ensured to fully address the Cloud-Fog
resource problem including dynamicity, scale, and complex-
ity, among others. These criteria state that a proper solution
for Cloud-Fog resource orchestration needs (1) to capture
the highly dynamic nature of the IoT-Fog-Cloud environ-
ment by accurately monitoring events and states evolution.
It needs to (2) support systems scalability and complexity
resulting from the increasing IoT manufacturers and Cloud/-
Fog providers, which lead to interoperability and heteroge-
neous concerns and overlapping requirements.

In this paper, we provide a formal model to orchestrate
the Cloud-Fog environment’s management. We propose a
way to manage self-adaptation of both Cloud and Fog layers
in order to achieve this goal. In our modeling approach, the
designed self-adaptation mechanisms answer the dynamicity
criteria: we modeled several atomic actions such as Cloud
and/or Fog service replication, service mobility across Fog
nodes and migration across Cloud VMs as well as service
offloading from Cloud to Fog (and vice-versa), among oth-
ers. Our approach also supports scalability by managing the
adaptation’s triggering in such a way to ensure different re-
quirements in terms of Cloud VMs’ and Fog nodes load, and
services resource requirements. Furthermore, we model the
entire Cloud-Fog environment as sets (or pools) of resource
(VMs, Nodes and their allocated computational resource).
Load, resource and service placement are easily monitored
through different predicates that capture their state and evo-
lution, which answers the dynamicity criteria. In addition,
we reduce the problem’s complexity by providing a generic
modeling approach which is technology-free and provider
agnostic.

Finally, our LTL-based encoding of the system’s tem-
poral evolution through properties describing its behavioral
correctness go towards supporting (and ensuring) both dy-
namicity and complexity. In this line of work, authors of [24]
provide a formal modeling approach to manage self-adaptive
behaviors in Fog-based systems. They propose a Bigraphical
Reactive Systems (BRS for short) modeling of Fog systems’
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structure and behavior. They provide axiomatic construction
rules to describe their spatial distribution and Bigraphical
reaction rules to describe their temporal evolution. Generic
adaptation actions are proposed and formal verification of
the behavior’s qualitative correctness are discussed.

7. Conclusion

In this paper, we proposed a formal based solution to de-
sign, implement and verify Cloud-Fog self-adaptation and
orchestration, aiming at optimizing the use of resource pools
available at both Cloud and Fog layers in order to accurately
meet service requirements. First, we modeled Cloud and
Fog layers in terms of structure and behavior to identify a
set of monitoring predicates and a set of atomic adaptation
actions. The predicates were used to diagnose both layers’
states in terms of resource provisioning. The actions were
used to identify adaptation mechanisms to apply. In addi-
tion, we introduced a Cloud-Fog orchestrator which decides
of the actions to be triggered in order to adapt at Cloud and/or
Fog layers. The orchestrator considers the observed states
(monitoring predicates) of both layers and then applies the
proper sequence of actions to achieve an adaptation at one or
both layers. Finally, we provided a set of temporal proper-
ties to be satisfied to study the orchestrator’s behaviors and
ensure their qualitative correctness.

To achieve all these goals, we proposed a formal mod-
eling approach of self-adaptive Cloud and Fog orchestra-
tion based on rewriting logic. We used the formal speci-
fication language called Maude and its associated tools in-
cluding a model-checker for formal qualitative verification.
We showed that Maude provides an adequate expressiveness
to model the structure of a Cloud-Fog environment through
declarative constructors and its state through first order pred-
icates. We demonstrated that the rewriting logic semantics
were relevant in designing the modeled adaptation actions
through conditional rewrite rules that we designed to be com-
plementary and composable. Furthermore, we expressed
temporal properties with Linear Temporal Logic (LTL) to
study the managed Cloud-Fog environment temporal evolu-
tion in a qualitative point of view. We showed how to en-
able formal verification of the defined behaviors through the
Maude-integrated model-checker. The model-checker con-
ducts state-based verification of the LTL properties by im-
plementing a Kripkestructure to tackle the state explosion
problem. Finally, we illustrated our modeling approach and
discussed the qualitative verification of the introduced be-
haviors’ correctness through a case study in a Cloud/Fog-
based smart city scenario.

As future work, we are considering three main exten-
sions for this work: (1) enabling time-aware modeling and
analysis, (2) integrating the in-Maude strategies and (3) pro-
viding solutions for the orchestrator’s fault-tolerance and re-
silience. The first extension is to provide time-enabled mod-
eling and analysis of the designed behaviors. Such model-
ing would push the decision-making even further by inte-
grating strict/loose response time modeling of services’ re-
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quirements. It would also enable quantitative evaluation and
validation of the proposed behaviors. The second extension
is to define a set of Maude strategies to control the condi-
tion rewrite rules triggering. Maude strategies can describe
accurate behavior patterns in order to apply precedence and
priorities between the rules. Such modeling would improve
the model’s behavioral correctness as well as optimizing it
by reducing the possible intermediary states. Finally, the
third extension is to provide restoring capabilities and con-
tinuity solutions to ensure the orchestrator’s behavior fault-
tolerance as it may be subject of anomalies if any kind, linked
to software or hardware failure.

A. Maude specification modules for
Cloud/Fog self-adaptation and
orchestration
Listing 1 shows the Maude functional module Service-

Spec. It encodes our specification of software services run-

ning on the Cloud and/or the Fog layers. The specification
is detailed under Section 3.1.

Listing 1: Functional module: ServiceSpec

fmod ServiceSpec is

protecting NAT FLOAT BOOL .

sorts S SL state RES.

subsort S < SL .

——Service and resource construction axioms

op S[_,_,_:_:_] : Nat Nat Nat RES state —> S [ctor]

op —_,_,_— : FLOAT FLOAT FLOAT —> RES [ctor ]

ops stable overloaded unused underused : —> state [ctor]
——service lists

op nils : — SL [ctor]

op +_ : SL SL —> SL [ctor assoc comm id: nils] .
——Monitoring predicates

ops overS(_) unusedS(_) stableS(_): S —> Bool .

——Operations

op loadS(_) : S —> Nat .

op rtS(_) : S —> Nat .

op reqS(_) : S —> RES .

ops _>_, _<_, _=_ : RES RES —> BOOL .
endfm

Listing 2 shows the Maude functional module Cloud-
Spec. It encodes our specification of Cloud systems. The
specification is commented under Section 3.2.

Listing 2: Functional module: CloudSpec

fmod CloudSpec is

protecting NAT FLOAT BOOL .
including ServiceSpec

sorts CS VM VML .

subsort VM < VML .

——Cloud layer construction axioms

op CS<_/_> : Nat VML —> CS [ctor]

op VWI{_,_:_:_} : Nat SL RES state —> VM [ctor]
——VM lists

op nilv : —> VML [ctor]

op _|l_ : VML VML —> VML [ctor assoc comm id: nilv]

——Monitoring predicates

ops AoverV(_) EoverV(_) EunV(_) AoverCS(_)
EoverCS(_) unS(_) MIGpredC(_)
LBSpredC(_): CS —> Bool .

ops overV(_) unV(_) underV(_) stableV (_): VM —> Bool .

——Access operations

op loadCS(_) : CS —> Nat .
op loadV(_) : VWM —> Nat .
: W —> RES .

op resV(_)
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——Reconfiguration actions

ops newV(_) newCS(_) MIGe(_) LBSc(_)
Vin(_) CSin(_) : CS —> CS .

ops scaleUpV (_) scaleDownV(_) : VM —> WM .

endfm

Listing 3 shows the Maude functional module FogSpec
encoding our specification of Fog systems. The specification
is detailed under Section 3.3.

Listing 3: Functional module: FogSpec

fmod FogSpec is

protecting NAT FLOAT BOOL .
including ServiceSpec

sorts FS N NL.

subsort N < NL .

——Fog layer construction axioms

op FS<_/_> Nat NL —> FS [ctor] .

op N{_, : :_} Nat SL RES state —> N [ctor]

———Node lists

op niln : —> NL [ctor]

op _I_ : NL NL —> NL [ctor assoc comm id: niln]

——Monitoring predicates

ops AoverN(_) EoverN(_) EunN(_) AoverFS(_)
EoverFS (_) unFS(_) MIGpredF (_) FS —> Bool

ops overN(_) unN(_) underN(_): N —> Bool

——Access operations

op loadFS (_) FS —> Nat
op loadN(_) : N —> Nat
: N —> RES

op resN(_)

——Reconfiguration actions

ops onN(_) newSF(_) MIGf(_) offN(_) SinF(_) FS —> FS

endfm

Listing 4 shows the Maude system module OrchBehav-
ior encoding our Cloud-Fog orchestrator specification and
behavior. The specification is commented under Section 4.1.

Listing 4: System module: Cloud-Fog orchestrator behav-
iors

mod OrchBehavior is

protecting NAT FLOAT .

including ServiceSpec CloudSpec FogSpec.
sort ENV .

——Cloud—Fog environment specification

op _Il_ : CS FS — ENV [ctor]
——Variables
var cs : CS var fs FS
var vm : VM . var node : N .
var vml : VML . var nl : NL .
vars s : S vars sl sl2 SL .
vars X y z x2 y2 z2 : NAT .
vars st st2 state vars res res2 : RES
——Cloud local adaptation
crl [cl-Low]: c¢s Il fs => newV(cs) Il fs
if (AoverV(cs)) .
crl [cl-Hi]: cs Il fs => newV(cs) Il fs
if (EoverV(cs)
and not (EunV(cs) or EunderV(cs)))
crl [c2]: ¢cs Il fs => Vin(es) |l fs
if (EunV(cs) and not AoverV(cs))
crl [c3] cs |l fs = MIGc(cs) |l fs
if (MIGpredC(cs)) .
crl [c4-Low]: cs Il fs => newCS(cs) Il fs
if (AoverCS(cs)) .
crl [c4-Hi]: cs Il fs => newCS(cs) Il fs
if (EoverCS(cs)) .
crl [c5]: ¢cs Il fs = SinC(cs) Il fs
if (EunCS(cs) and not EoverCS(cs))
crl [c6]: cs Il fs => LBSc(cs) Il fs
if (LBSpredC(cs))
crl [c7]: CS<x,y,z/vmlvml:st> || fs
=> CS<x,y,z/scaleUpV (vm)lvml:st> [l fs
if (overV(vm))
crl [c8]: CS<x,y,z/vmlvml:st> |l fs

=> CS<x,y,z/scaleDownV (vm)|lvml:st> || fs

verify Cloud/Fog self-adaptation and orchestration
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VK N R W —

if (underV(vm))
——Fog local adaptation

crl [fl-low]: cs Il fs => cs |l onN(fs)
if (AoverN(fs)) .
crl [fl1-Hi]: cs Il fs => cs |l onN(fs)
if (EoverN(fs))
and not (EunN(fs) or EunderN(fs)))
crl [f2]: cs Il fs => cs |l offN(fs)
if (EunN(fs)
and not (AoverN(fs) or EunderN(fs)))
crl [f3] cs Il fs => cs |l MIGf(fs)
if (MIGpredF(fs))
crl [f4—Low]: ¢s |l fs => c¢s |l newFS(fs)
if (AoverFS(fs))
crl [f4—Hi]: cs Il fs => cs |l newFS(fs)
if (EoverFS(fs) and not EunFS(fs))
crl [f5]: cs Il fs => cs Il SinF(fs)
if (EunFS(fs) and not EoverFS(fs))
crl [f6]: cs Il fs => cs |l LBSf(fs)

if (LBSpredF(fs))
——Cloud—Fog actions

crl [ol]:
CS<x,y,z/VM{y,s+sl:res:st }lvml> ||
FS<x2,y2,z2/N{y2,s12:res2:st2}Inl>
=>
CS<x,y,z/VM{y,sl:res:st}lvml> ||
FS<x2,y2,z2/N{y2,s+sl2:res2:st2}Inl>
if ( (st==overloaded
or net(res)< net(resS(s)))
and st2!=overloaded
and res2>resS(s) )
crl [02]:
FS<x,y,z/N{y,s+sl:res:st}Inl> Il
CS<x2,y2,z2/VM{y2,s12:res2:st2}lvml>
=>
FS<x,y,z/N{y,sl:res:st}Inl> |l
CS<x2,y2,z2/VM{y2,s+sl2:res2:st2}lvml>
if ( st==overloaded and AoverN(sl)
and st2!=overloaded
and res2>resS(s) )
endm

Listing 5 shows the Maude system module Properties
implementing the Kripke structure and LTL formulas to al-
low formal verification of the designed behaviors via the
Maude model-checker. The specification is commented un-
der Section 4.2.2.

Listing 5: System module: Properties decalarations

mod Properties is

including MODEL-CHECKER LTL-SIMPLIFIER SATISFACTION .

protecting OrchBehavior

subsort CS < State subsort FS < State

——Atomic propositions (monitoring predicates)

ops pl p2 p3 p20 : —> Prop [ctor]

——Properties expressing strategies satisfaction

ops ScaleOutVM ScaleOutS ScaleInVM ScaleOutS
ScaleUp ScaleDown Migration LoadBalacingC
Provision Deprovision Mobility LoadBalaneF
OffloadC BackupF : —> Prop [ctor]

——Variables for symbolic reasoning

var ¢cs : CS

var fs FS

var P : Prop .

——Defining Cloud symbolic states

ceq c¢s |I= pl = true if EoverV( c¢s ) == true
ceq c¢s |= p2 = true if AoverV( cs ) == true
ceq cs |I= p9 = true if LBSpredC( cs ) == true
——Defining Fog symbolic states

ceq fs |= pl0 = true if EoverN( fs ) == true
ceq fs |= pl5 = true if EoverFS( fs ) == true

——Encoding LTL formulas
eq ScaleOutCVM = [] ( p2 \/ (pl /\ ~ p3) > <> ~ p2 )
eq LoadBalanceC = [] ((p6 /\ p8)-> O p9 ) U ~ pb6)

endm
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B. Explaining the defined LTL property
formulas

The LTL property formulas introduced under Section 4.2.1
are explained here. We detail each property formula for the
Cloud layer self-adaptation (eq. | to eq. 8), the Fog layer
self-adaptation (eq. 9 to eq. 14) and their orchestration (eq.
15 and eq. 16). For remainder and to ease understanding the
formulas, we duplicate the used LTL operators and symbols
Table 5 of Section 4.2.1 as Table 6 in this Section.

B.1. Cloud self-adaptation properties

ScaleOutl™ = O[(92 V (91 A@3)) — G2 (1)

The ScaleOutM formula describes the system’s ability
to scale-out at the infrastructure level of the Cloud layer by
adding a VM instance, in response of a global state of under-
provisioning (i.e., overloading) at the infrastructure level. It
states the following: when all Cloud VMs are overloaded
(@2) or when a VM is overloaded (¢1) and no VM is un-
used (—@3), it implies (—) that the system will eventually
({») end up by reaching a state where all VMs are not over-
loaded (—@2) and this pattern is always true ([]) i.e., repeats
indefinitely.

ScaleOutg = |:|[((p7 V (96 A @8)) — (>—|(p7] 2)

The ScaleOutg formula describes the system’s ability
to scale-out at the application levels of the Cloud layer by
adding a service instance, in response of a global state of
under-provisioning at the application level. It states the fol-
lowing: when all Cloud services are overloaded (¢7) or a
service is overloaded (¢6) and no service is unused (—@8),
it implies (—) that the system will eventually ({)) end up by
reaching a state where all services are not overloaded (—¢7)
and this pattern is always true ([]) i.e., repeats indefinitely.

ScaleIngM = |:|[(((p3 VvV pd) Apl) > (>—l(p3] 3)

The Scaleln},™ formula describes the system’s ability
to scale-in at the infrastructure level of the Cloud layer by
removing a VM instance, in response of a global state of
over-provisioning at the infrastructure level. It states the fol-
lowing: when a Cloud VM is unused (¢3) or is underused
(p4) and no VM is overloaded (—¢1), it implies (—) that the
system will eventually (() end up by reaching a state where
no VM is unused (—¢3) and this pattern repeats indefinitely
()2

Scalefng =[] [(goS A @6) = <>—|¢8] “)

The Scalelng formula describes the system’s ability to
scale-in at the application level of the Cloud layer by re-
moving a Service instance, in response to a state of over-
provisioning of the application level. It states the following:
when a Cloud service is unused (¢8) and no Cloud service is

Table 6
used LTL operators and symbols

Meaning
conjunction / and
disjunction / or
implies
negation / not
globally / always
eventually or "in the future"
next time

until

LTL operator/symbol

Slokeldl 4| <>

overloaded (—@6), it implies (—) that the system will even-
tually () reach a state where no Cloud service is unused
(—@8) and this pattern repeats indefinitely ([7]).

ScaleUpc = O[@2V (@l A~(@3V ¢4) = O-ol| (5)

The ScaleUp formula describes the system’s ability to
scale-up by adding more resources to a VM instance, in re-
sponse of a global state of under-provisioning (i.e., overload-
ing) at the infrastructure level. It states the following: when
all Cloud VMs are overloaded (¢2) or when a VM is over-
loaded (1) and no VM is unused or underused (—~(@3V @4)),
it implies (—) that the system will eventually ({)) reach a
state where no VM is overloaded (—¢1) and this pattern re-
peats indefinitely ([7).

ScaleDownc = [[(04 A —@1) » H=p4] 6)

The ScaleDown formula describes the system’s ability
to scale-down by removing resources from a VM instance, in
response of a global state of over-provisioning at the infras-
tructure level. It states the following: when a VM is under-
used (@4) and no VM is overloaded (—@1), it implies (—)
that the system will eventually ({)) reach a state where no
VM is underused (—@4) and this pattern repeats indefinitely

()2

Load Balance: = [[((96 A ¢8) = O@9) U 6] (7)

The formula LoadBalance - for the Cloud layer describes
the system ability to balance the Cloud services load by redi-
recting requests across the services. It states the following:
when a service is overloaded (¢6) and another service is un-
used (@8), it implies that the next (O) expected state is when
requests redirecting across Cloud services is applied (¢9),
until (V) no service instance is overloaded (—¢6) and this
pattern is always true ((7]).

Migratec = [[(@1 A (@3 V @4) = O95) U'-pl] (8)

The formula Migrate for the Cloud layer describes the
system ability to balance the Cloud VMs load by relocating
(migrating) services across the VMs. It states the following:

K. Khebbeb et al.: Preprint submitted to Elsevier

Page 19 of 22



A Maude-based rewriting approach to model and verify Cloud/Fog self-adaptation and orchestration

when a VM is overloaded (¢1) and another VM is unused or
underused (@3 Vv @4), it implies that the next (O) expected
state is when services migration across Cloud VMs is ap-
plied (¢5), until (V") no VM instance is overloaded (—¢1)
and this pattern is always true ([7]).

B.2. Fog self-adaptation properties

Provisiony = [O[(@11V(p10A-912))—>O-ell] (9)

The Provision g formula describes the system’s ability to
provision more Fog nodes by switching them on, in response
of a global state of under-provisioning at the nodes level.
It states the following: when all Fog nodes are overloaded
(@11) or when a Fog node is overloaded (¢10) and no node is
unused (—@12), it implies (—) that the system will eventually
({) reach a state where not all Fog nodes are overloaded
(m¢11) and this pattern repeats indefinitely ([7]).

Provision’, = ([(@16V (915A=¢17) > Omepl6] (10)

The ProvisionISp formula describes the system’s ability
to provision more Fog services by deploying new service in-
stances, in response of a global state of under-provisioning
at the application level. It states the following: when all Fog
services are overloaded (¢16) or when a Fog service is over-
loaded (@15) and no services is unused (—¢@17), it implies
(—) that the system will eventually ({)) reach a state where
not all Fog services are overloaded (—@11) and this pattern
repeats indefinitely ([]).

Deprovisiony = [O[(912vVp13)A-910)>O-el2] (11)

The Deprovisiong formula describes the system’s abil-
ity to deprovision Fog nodes by switching them off, in re-
sponse of a global state of over-provisioning at the Fog nodes
level. Tt states the following: when a Fog node is unused
(@12) oris underused (¢13) and no node is overloaded (—¢10),
it implies (—) that the system will eventually ({)) reach a
state where no Fog node is unused (—¢12) and this pattern
repeats indefinitely ([7]).

Deprovisiony. = [[(@17 A ~@15) - O-pl7] (12)

The Deprovision“; formula describes the system’s ability
to deprovision Fog services by destroying the unused ones,
in response of a global state of over-provisioning at the Fog
application level. It states the following: when a Fog ser-
vice is unused (@17) and no service is overloaded (—@15), it
implies (—) that the system will eventually ({)) reach a state
where no Fog service is unused (—¢17) and this pattern re-
peats indefinitely (7).

Load Balance = [[((915A@17)—>Op18)U¢15] (13)

The formula LoadBalance, for the Fog layer describes
the system ability to balance the Fog services load by redi-
recting requests across the services. It states the follow-
ing: when a service is overloaded (@15) and another ser-
vice is unused (@17), it implies that the next (O) expected
state is when requests redirection across Fog services is ap-
plied (¢18), until (V") no Fog service instance is overloaded
(m@15) and this pattern is always true ([]).

Mobility = O[(@10A(@12V@13)>0pl4)U-e10] (14)

The formula Mobility for the Fog layer describes the
system ability to balance the Fog nodes load by relocating
services across the nodes. It states the following: when a Fog
node is overloaded (¢10) and another Fog node is unused or
underused (@12V @13), it implies that the next (O) expected
state is when services mobility across Fog nodes is applied
(@14), until (V") no Fog node is overloaded (—¢10) and this
pattern is always true ([J).

B.3. Cloud-Fog orchestration properties

Of fload: = |:|[((p1 A(pl2V @l3)
- 0919 U (-pl v plD)] (15

The Offload formula describes the system’s ability to
offload the Cloud layer towards the Fog layer by relocating
a Cloud service from a Cloud VM to Fog node. It states
the following: when a Cloud VM is overloaded (¢1) and a
Fog node is unused or underused (@12 v @13), it implies
that the next (O) expected state is when services relocating
from Cloud VMs to Fog nodes is applied (¢19), until (V)
no Cloud VM is overloaded or all Fog nodes are overloaded
(=@l Vv @l11) and this pattern is always true ([]).

Backupy = D[((q)ll A @2)
- 0@20) V' (-1l Vv @2)] (16)

The Backupr formula describes the system’s ability to
backup the Fog layer towards the Cloud layer by relocat-
ing a Fog service from a Fog node to Cloud VM. It states
the following: when all Fog nodes are overloaded (¢11)
and not all Cloud VMs are overloaded (—¢2), it implies that
the next (O) expected state is when services relocating from
Fog nodes to Cloud VMs is applied (¢20), until (V) not all
Fog nodes are overloaded or all Cloud VMs are overloaded
(=11 Vv @2) and this pattern is always true ([]).
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